Nonergodic solutions of the generalized Langevin equation
نویسندگان
چکیده
منابع مشابه
The generalized Langevin equation with Gaussian fluctuations
It is shown that all statistical properties of the generalized Langevin equation with Gaussian fluctuations are determined by a single, two-point correlation function. The resulting description corresponds with a stationary, Gaussian, non-Markovian process. Fokker-Planck-like equations are discussed, and it is explained how they can lead one to the erroneous conclusion that the process is nonst...
متن کاملEquilibration problem for the generalized Langevin equation
We consider the problem of equilibration of a single oscillator system with dynamics given by the generalized classical Langevin equation. It is well-known that this dynamics can be obtained if one considers a model where the single oscillator is coupled to an infinite bath of harmonic oscillators which are initially in equilibrium. Using this equivalence we first determine the conditions neces...
متن کاملExact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملStability of Stationary Solutions of the Schrödinger-langevin Equation
The stability properties of a class of dissipative quantum mechanical systems are investigated. The nonlinear stability and asymptotic stability of stationary states (with zero and nonzero dissipation respectively) is investigated by Liapunov’s direct method. The results are demonstrated by numerical calculations on the example of the damped harmonic oscillator.
متن کاملData-driven parameterization of the generalized Langevin equation
We present a data-driven approach to determine the memory kernel and random noise in generalized Langevin equations. To facilitate practical implementations, we parameterize the kernel function in the Laplace domain by a rational function, with coefficients directly linked to the equilibrium statistics of the coarse-grain variables. We show that such an approximation can be constructed to arbit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2011
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.83.062102